
CMSC 341

Lecture 5 Asymptotic Analysis

Based on slides from Prof; Gibson, previous iterations of CMSC 341, and textbook



Today’s Topics

 Review

 Mathematical properties

 Proof by induction

 Program complexity

 Growth functions

 Big O notation
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Mathematical Properties
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Why Review Mathematical Properties?

 You will be solving complex problems

 That use division and power

 These mathematical properties will help you 

solve these problems more quickly

 Exponents

 Logarithms

 Summations

 Mathematical Series
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Exponents

 Shorthand for multiplying a number by itself

 Several times

 Used in identifying sizes of memory

 Help to determine the most efficient way to 

write a program
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Exponent Identities

xaxb = x(a+b)

xaya = (xy)a

(xa)b = x(ab)

x(a-b) = (xa)/(xb)

x(-a) = 1/(xa)

x(a/b) = (xa)  =  √xa
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Logarithms

 ALWAYS base 2 in Computer Science

 Unless stated otherwise

 Used for:

 Conversion between numbering systems

 Determining the mathematical power needed

 Definition:

 n = logax if and only if an = x
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Logarithm Identities

logb(1) = 0

logb(b) = 1

logb(x*y) = logb(x) + logb(y)

logb(x/y) = logb(x) - logb(y)

logb(x
n) = n*logb(x)

logb(x) = logb(c) * logc(x) 

= logc(x) / logc(b)
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Summations

 The addition of a sequence of numbers

 Result is their sum or total

 Can break a function into several summations
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Proof by Induction
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Proof by Induction

 A proof by induction is just like an ordinary 

proof

 In which every step must be justified

 However, it employs a neat trick:

 You can prove a statement about an arbitrary 

number n by first proving 

 It is true when n is 1 and then

Assuming it is true for n=k and 

Showing it is true for n=k+1
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Proof by Induction Example

 Let’s say you want to show that you can 

climb to the nth floor of a fire escape

 With induction, need to show that:

 They can climb the ladder up to the fire 

escape (n = 0)

 They can climb the first flight of stairs (n = 1)

 Then we can show that you can climb the 

stairs from any level of the fire escape 

(n = k) to the next level (n = k + 1)
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Program Complexity
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What is Complexity?

 How many resources will it take to solve a 

problem of a given size?

 Time (ms, seconds, minutes, years)

 Space (kB, MB, GB, TB, PB)

 Expressed as a function of problem size 

(beyond some minimum size)
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Increasing Complexity

 How do requirements grow as size grows?

 Size of the problem

 Number of elements to be handled

 Size of thing to be operated on
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Determining Complexity: Experimental 

 Write a program implementing the algorithm

 Run the program with inputs of varying size 

and composition

 Use a method like clock() 

to get an accurate 

measure of the actual 

running time

 Plot the results
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Limitations of Experimental Method

 What are some limitations of this approach?

 Must implement algorithm to be tested

 May be difficult

 Results may not apply to all possible inputs

 Only applies to inputs explicitly tested

 Comparing two algorithms is difficult

 Requires same hardware and software
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Determining Complexity: Analysis

 Theoretical analysis solves these problems

 Use a high-level description of the algorithm

 Instead of an implementation

 Run time is a function of the input size, n

 Take into account all possible inputs

 Evaluation is independent of specific 

hardware or software

 Including compiler optimization
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Using Asymptotic Analysis

 For an algorithm:

 With input size n

 Define the run time as T(n)

 Purpose of asymptotic analysis is to 

examine:

 The rate of growth of T(n)

 As n grows larger and larger
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Growth Functions
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Seven Important Functions

 Constant  1

 Logarithmic  log n

 Linear  n

 N-Log-N  n log n

 Quadratic  n2

 Cubic  n3

 Exponential  2n
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Constant and Linear

 Constant

 T(n) = c

 Getting array element at known location 

 Any simple C++ statement (e.g. assignment)

 Linear

 T(n) = cn [+ any lower order terms]

 Finding particular element in array of size n

 Sequential search

 Trying on all of your n shirts
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“c” is a constant value, like 1



Quadratic and Polynomial

 Quadratic

 T(n) = cn2 [ + any lower order terms]

 Sorting an array using bubble sort

 Trying all your n shirts with all your n pants

 Polynomial

 T(n) = cnk [ + any lower order terms]

 Finding the largest element of a k-dimensional array

 Looking for maximum substrings in array

UMBC CMSC 341 Asymptotic Analysis 25



Exponential and Logarithmic

 Exponential

 T(n) = cn [ + any lower order terms]

 Constructing all possible orders of array elements

 Towers of Hanoi (2n)

 Recursively calculating nth Fibonacci number (2n)

 Logarithmic

 T(n) = lg n [ + any lower order terms]

 Finding a particular array element (binary search)

 Algorithms that continually divide a problem in half
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Graph of Growth Functions
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Graph of Growth Functions
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Expanded Growth Functions Graph
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Asymptotic Analysis
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Simplification

 We are only interested in the growth rate as 

an “order of magnitude”

 As the problem grows really, really, really large

 We are not concerned with the fine details

 Constant multipliers are dropped

 If T(n) = c*2n, we reduce it to T(n) = 2n

 Lower order terms are dropped

 If T(n) = n4 + n2, we reduce it to T(n) = n4
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Three Cases of Analysis 

 Best case

 When input data minimizes the run time

 An array that needs to be sorted is already in order

 Average case

 The “run time efficiency” over all possible inputs

 Worst case

 When input data maximizes the run time

 Most adversarial data possible
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Analysis Example: Mileage

 How much gas does it take to go 20 miles?

 Best case

 Straight downhill, wind at your back

 Average case

 “Average” terrain

 Worst case

 Winding uphill gravel road, inclement weather
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Analysis Example: Sequential Search

 Consider sequential search on an unsorted 

array of length n, what is the time complexity?

 Best case

 Worst case

 Average case
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Comparison of Two Algorithms

 Insertion sort:

 (n2)/4

 Merge sort:

 2nlgn

 n = 1,000,000

 Million ops per second

 Merge takes 40 secs

 Insert takes 70 hours
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Big O Notation
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What is Big O Notation?

 Big O notation has a special meaning in 

Computer Science

 Used to describe the complexity (or 

performance) of an algorithm

 Big O describes the worst-case scenario

 Big Omega (Ω) describes the best-case

 Big Theta (Θ) is used when the best and 

worst case scenarios are the same
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Big O Definition

 We say that f(n) is O(g(n)) if

 There is a real constant c > 0

 And an integer constant n0 ≥ 1

 Such that

 f(n) ≤ c*g(n), for n ≥ n0

 Let’s do an example

 Taken from https://youtu.be/ei-A_wy5Yxw
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Big O: Example – n4

 We have f(n) = 4n2 + 16n + 2

 Let’s test if f(n) is O(n4)

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0

 We’ll start with c = 1
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n0 4n2 + 16n + 2 ≤ c*n4

0 2 > 0

1 22 > 1

2 50 > 16

3 86 > 81

4 130 < 256



Big O: Example – n4
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Big O: Example

 So we can say that 

 f(n) = 4n2 + 16n + 2 is O(n4)

 Big O is an upper bound

 The worst the algorithm could perform

 Does n4 seem high to you?
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Big O: Example – n2

 We have f(n) = 4n2 + 16n + 2

 Let’s test if f(n) is O(n2)

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0

 Let’s start with c = 10
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Big O: Example – n2
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Big O: Example

 So we can more accurately say that

 f(n) = 4n2 + 16n + 2 is O(n2)

 Could f(n) = 4n2 + 16n + 2 is O(n) ever be true?

 Why not?
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Big O:

Practice Examples
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Big O: Example 1

 Code:

a = b;

++sum;

int y = Mystery( 42 );

 Complexity:

 Constant – O(c)
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Big O: Example 2

 Code:
sum = 0;

for (i = 1; i <= n; i++) {

sum += n;

}

 Complexity:

 Linear – O(n)
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Big O: Example 3 

 Code:
sum1 = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= n; j++) {

sum1++;

}

}

 Complexity:

 Quadratic – O(n2)
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Big O: Example 4 

 Code:
sum2 = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= i; j++) {

sum2++;

}

}

 Complexity:

 Quadratic – O(n2)
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how many times do 
we execute this 

statement?

1 + 2 + 3 + 4 + … + n-2 + n-1 + n



Expressing as a summation

 Can we express this as a summation?

 Yes!

 Does this have a known formula?

 Yes!

 What does this formula multiply out to?

 (n2 + n) / 2

 or O(n2)
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Other Geometric Formulas

 O(n3)

 O(n4)

 O(cn)
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Big O: Example 5 

 Code:
sum3 = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= i; j++) {

sum3++; }

}

for (k = 0; k < n; k++) {

a[ k ] = k;

}

 Complexity:

 Quadratic – O(n2)
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Big O: Example 6

 Code:
sum4 = 0;

for (k = 1; k <= n; k *= 2)

for (j = 1; j <= n; j++) {

sum4++;

}

 Complexity:

 O(n log n)
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Big O: More Examples

 Square each element of an N x N matrix

 Printing the first and last row of an N x N 

matrix

 Finding the smallest element in a sorted array 

of N integers

 Printing all permutations of N distinct 

elements
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Big Omega (Ω) and Big Theta(Θ)
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“Big” Notation (words)

 Big O describes an asymptotic upper bound

 The worst possible performance we can expect

 Big Ω describes an asymptotic lower bound

 The best possible performance we can expect

 Big Θ describes an asymptotically tight bound

 The best and worst running times can be 

expressed with the same equation
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“Big” Notation (equations) 

 Big O describes an asymptotic upper bound

 f(n) is asymptotically less than or equal to g(n)

 Big Ω describes an asymptotic lower bound

 f(n) is asymptotically greater than or equal to g(n)

 Big Θ describes an asymptotically tight bound

 f(n) is asymptotically equal to g(n)
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Big O and Big Omega Example
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f(n)
4x2+16x+2

g(n)
x4

4*g(n)
x2

O(n4) Ω(n2)



Big Theta Example
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f(n)
4x2+16x+2

10*g(n)
x2

4*g(n)
x2

O(n2) Ω(n2)

Θ(n2)



A Simple Example

 Say we write an algorithm that takes in an 

array of numbers and returns the highest one

 What is the absolute fastest it can run?

 Linear time – Ω(n)

 What is the absolute slowest it can run?

 Linear time – O(n)

 Can this algorithm be tightly asymptotically bound?

 YES – so we can also say it’s Θ(n)
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Proof by Induction

61



Proof by Induction

 The only way to prove that Big O will work

 As n becomes larger and larger numbers

 To prove F(n) for any positive integer n

1. Base case: prove F(1) is true

2. Hypothesis: Assume F(k) is true for any 

k >= 1

3. Inductive: Prove the if F(k) is true, then

F(k+1) is true
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Induction Example (Step 1)

 Show that for all n ≥ 1 :

1. Base case:

 n = 1

 (This is our n0)
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Induction Example (Step 2)

 Show that for all n ≥ 1 :

2. Hypothesis:

 Assume that 

holds for any n ≥ 1
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Induction Example (Step 3)

 Show that for all n ≥ 1 :

3. Inductive:

 Prove that if F(k) is true (assumed), 

the F(k+1) is also true

 We’ve already proved F(1) is true

 So proving this step will prove F(2) from F(1), 

and F(3) from F(2), …, and F(k+1) from F(k)
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Induction Example (Step 3)
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