
CMSC 341

Lecture 5 Asymptotic Analysis

Based on slides from Prof; Gibson, previous iterations of CMSC 341, and textbook

Today’s Topics

 Review

 Mathematical properties

 Proof by induction

 Program complexity

 Growth functions

 Big O notation

UMBC CMSC 341 Asymptotic Analysis 2

Mathematical Properties

3

Why Review Mathematical Properties?

 You will be solving complex problems

 That use division and power

 These mathematical properties will help you

solve these problems more quickly

 Exponents

 Logarithms

 Summations

 Mathematical Series

UMBC CMSC 341 Asymptotic Analysis 4

Exponents

 Shorthand for multiplying a number by itself

 Several times

 Used in identifying sizes of memory

 Help to determine the most efficient way to

write a program

UMBC CMSC 341 Asymptotic Analysis 5

Exponent Identities

xaxb = x(a+b)

xaya = (xy)a

(xa)b = x(ab)

x(a-b) = (xa)/(xb)

x(-a) = 1/(xa)

x(a/b) = (xa) = √xa

UMBC CMSC 341 Asymptotic Analysis 6

1

b b

Exponent Identities

xaxb = x(a+b)

xaya = (xy)a

(xa)b = x(ab)

x(a-b) = (xa)/(xb)

x(-a) = 1/(xa)

x(a/b) = (xa) = √xa

UMBC CMSC 341 Asymptotic Analysis 7

1

b b

Logarithms

 ALWAYS base 2 in Computer Science

 Unless stated otherwise

 Used for:

 Conversion between numbering systems

 Determining the mathematical power needed

 Definition:

 n = logax if and only if an = x

UMBC CMSC 341 Asymptotic Analysis 8

Logarithm Identities

logb(1) = 0

logb(b) = 1

logb(x*y) = logb(x) + logb(y)

logb(x/y) = logb(x) - logb(y)

logb(x
n) = n*logb(x)

logb(x) = logb(c) * logc(x)

= logc(x) / logc(b)

UMBC CMSC 341 Asymptotic Analysis 9

Logarithm Identities

logb(1) = 0

logb(b) = 1

logb(x*y) = logb(x) + logb(y)

logb(x/y) = logb(x) - logb(y)

logb(x
n) = n*logb(x)

logb(x) = logb(c) * logc(x)

= logc(x) / logc(b)

UMBC CMSC 341 Asymptotic Analysis 10

Summations

 The addition of a sequence of numbers

 Result is their sum or total

 Can break a function into several summations

UMBC CMSC 341 Asymptotic Analysis 11

Proof by Induction

12

Proof by Induction

 A proof by induction is just like an ordinary

proof

 In which every step must be justified

 However, it employs a neat trick:

 You can prove a statement about an arbitrary

number n by first proving

 It is true when n is 1 and then

Assuming it is true for n=k and

Showing it is true for n=k+1

UMBC CMSC 341 Asymptotic Analysis 13

Proof by Induction Example

 Let’s say you want to show that you can

climb to the nth floor of a fire escape

 With induction, need to show that:

 They can climb the ladder up to the fire

escape (n = 0)

 They can climb the first flight of stairs (n = 1)

 Then we can show that you can climb the

stairs from any level of the fire escape

(n = k) to the next level (n = k + 1)

UMBC CMSC 341 Asymptotic Analysis 14

Program Complexity

15

What is Complexity?

 How many resources will it take to solve a

problem of a given size?

 Time (ms, seconds, minutes, years)

 Space (kB, MB, GB, TB, PB)

 Expressed as a function of problem size

(beyond some minimum size)

UMBC CMSC 341 Asymptotic Analysis 16

Increasing Complexity

 How do requirements grow as size grows?

 Size of the problem

 Number of elements to be handled

 Size of thing to be operated on

UMBC CMSC 341 Asymptotic Analysis 17

Determining Complexity: Experimental

 Write a program implementing the algorithm

 Run the program with inputs of varying size

and composition

 Use a method like clock()

to get an accurate

measure of the actual

running time

 Plot the results

UMBC CMSC 341 Asymptotic Analysis 18

Limitations of Experimental Method

 What are some limitations of this approach?

 Must implement algorithm to be tested

 May be difficult

 Results may not apply to all possible inputs

 Only applies to inputs explicitly tested

 Comparing two algorithms is difficult

 Requires same hardware and software

UMBC CMSC 341 Asymptotic Analysis 19

Determining Complexity: Analysis

 Theoretical analysis solves these problems

 Use a high-level description of the algorithm

 Instead of an implementation

 Run time is a function of the input size, n

 Take into account all possible inputs

 Evaluation is independent of specific

hardware or software

 Including compiler optimization

UMBC CMSC 341 Asymptotic Analysis 20

Using Asymptotic Analysis

 For an algorithm:

 With input size n

 Define the run time as T(n)

 Purpose of asymptotic analysis is to

examine:

 The rate of growth of T(n)

 As n grows larger and larger

UMBC CMSC 341 Asymptotic Analysis 21

Growth Functions

22

Seven Important Functions

 Constant 1

 Logarithmic log n

 Linear n

 N-Log-N n log n

 Quadratic n2

 Cubic n3

 Exponential 2n

UMBC CMSC 341 Asymptotic Analysis 23

Constant and Linear

 Constant

 T(n) = c

 Getting array element at known location

 Any simple C++ statement (e.g. assignment)

 Linear

 T(n) = cn [+ any lower order terms]

 Finding particular element in array of size n

 Sequential search

 Trying on all of your n shirts

UMBC CMSC 341 Asymptotic Analysis 24

“c” is a constant value, like 1

Quadratic and Polynomial

 Quadratic

 T(n) = cn2 [+ any lower order terms]

 Sorting an array using bubble sort

 Trying all your n shirts with all your n pants

 Polynomial

 T(n) = cnk [+ any lower order terms]

 Finding the largest element of a k-dimensional array

 Looking for maximum substrings in array

UMBC CMSC 341 Asymptotic Analysis 25

Exponential and Logarithmic

 Exponential

 T(n) = cn [+ any lower order terms]

 Constructing all possible orders of array elements

 Towers of Hanoi (2n)

 Recursively calculating nth Fibonacci number (2n)

 Logarithmic

 T(n) = lg n [+ any lower order terms]

 Finding a particular array element (binary search)

 Algorithms that continually divide a problem in half

UMBC CMSC 341 Asymptotic Analysis 26

Graph of Growth Functions

UMBC CMSC 341 Asymptotic Analysis 27

Graph of Growth Functions

UMBC CMSC 341 Asymptotic Analysis 28

logarithmic

linear quadratic

n-log-n cubic

exponential

Expanded Growth Functions Graph

UMBC CMSC 341 Asymptotic Analysis 29

Asymptotic Analysis

30

Simplification

 We are only interested in the growth rate as

an “order of magnitude”

 As the problem grows really, really, really large

 We are not concerned with the fine details

 Constant multipliers are dropped

 If T(n) = c*2n, we reduce it to T(n) = 2n

 Lower order terms are dropped

 If T(n) = n4 + n2, we reduce it to T(n) = n4

UMBC CMSC 341 Asymptotic Analysis 31

Three Cases of Analysis

 Best case

 When input data minimizes the run time

 An array that needs to be sorted is already in order

 Average case

 The “run time efficiency” over all possible inputs

 Worst case

 When input data maximizes the run time

 Most adversarial data possible

UMBC CMSC 341 Asymptotic Analysis 32

Analysis Example: Mileage

 How much gas does it take to go 20 miles?

 Best case

 Straight downhill, wind at your back

 Average case

 “Average” terrain

 Worst case

 Winding uphill gravel road, inclement weather

UMBC CMSC 341 Asymptotic Analysis 33

Analysis Example: Sequential Search

 Consider sequential search on an unsorted

array of length n, what is the time complexity?

 Best case

 Worst case

 Average case

UMBC CMSC 341 Asymptotic Analysis 34

Comparison of Two Algorithms

 Insertion sort:

 (n2)/4

 Merge sort:

 2nlgn

 n = 1,000,000

 Million ops per second

 Merge takes 40 secs

 Insert takes 70 hours

UMBC CMSC 341 Asymptotic Analysis 35

Source: Matt Stallmann, Goodrich and Tamassia slides

Big O Notation

36

What is Big O Notation?

 Big O notation has a special meaning in

Computer Science

 Used to describe the complexity (or

performance) of an algorithm

 Big O describes the worst-case scenario

 Big Omega (Ω) describes the best-case

 Big Theta (Θ) is used when the best and

worst case scenarios are the same

UMBC CMSC 341 Asymptotic Analysis 37

Big O Definition

 We say that f(n) is O(g(n)) if

 There is a real constant c > 0

 And an integer constant n0 ≥ 1

 Such that

 f(n) ≤ c*g(n), for n ≥ n0

 Let’s do an example

 Taken from https://youtu.be/ei-A_wy5Yxw

UMBC CMSC 341 Asymptotic Analysis 38

Big O: Example – n4

 We have f(n) = 4n2 + 16n + 2

 Let’s test if f(n) is O(n4)

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0

 We’ll start with c = 1

UMBC CMSC 341 Asymptotic Analysis 39

n0 4n2 + 16n + 2 ≤ c*n4

0 2 > 0

1 22 > 1

2 50 > 16

3 86 > 81

4 130 < 256

Big O: Example – n4

 We have f(n) = 4n2 + 16n + 2

 Let’s test if f(n) is O(n4)

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0

 We’ll start with c = 1

UMBC CMSC 341 Asymptotic Analysis 40

n0 4n2 + 16n + 2 ≤ c*n4

0 2 > 0

1 22 > 1

2 50 > 16

3 86 > 81

4 130 < 256

Big O: Example

 So we can say that

 f(n) = 4n2 + 16n + 2 is O(n4)

 Big O is an upper bound

 The worst the algorithm could perform

 Does n4 seem high to you?

UMBC CMSC 341 Asymptotic Analysis 41

Big O: Example – n2

 We have f(n) = 4n2 + 16n + 2

 Let’s test if f(n) is O(n2)

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0

 Let’s start with c = 10

UMBC CMSC 341 Asymptotic Analysis 42

n0 4n2 + 16n + 2 ≤ c*n2

0 2 > 0

1 22 > 10

2 50 > 40

3 86 > 90

Big O: Example – n2

 We have f(n) = 4n2 + 16n + 2

 Let’s test if f(n) is O(n2)

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0

 Let’s start with c = 10

UMBC CMSC 341 Asymptotic Analysis 43

n0 4n2 + 16n + 2 ≤ c*n2

0 2 > 0

1 22 > 10

2 50 > 40

3 86 < 90

Big O: Example

 So we can more accurately say that

 f(n) = 4n2 + 16n + 2 is O(n2)

 Could f(n) = 4n2 + 16n + 2 is O(n) ever be true?

 Why not?

UMBC CMSC 341 Asymptotic Analysis 44

Big O:

Practice Examples

45

Big O: Example 1

 Code:

a = b;

++sum;

int y = Mystery(42);

 Complexity:

 Constant – O(c)

UMBC CMSC 341 Asymptotic Analysis 46

Big O: Example 2

 Code:
sum = 0;

for (i = 1; i <= n; i++) {

sum += n;

}

 Complexity:

 Linear – O(n)

UMBC CMSC 341 Asymptotic Analysis 47

Big O: Example 3

 Code:
sum1 = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= n; j++) {

sum1++;

}

}

 Complexity:

 Quadratic – O(n2)

UMBC CMSC 341 Asymptotic Analysis 48

Big O: Example 4

 Code:
sum2 = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= i; j++) {

sum2++;

}

}

 Complexity:

 Quadratic – O(n2)

UMBC CMSC 341 Asymptotic Analysis 49

how many times do
we execute this

statement?

1 + 2 + 3 + 4 + … + n-2 + n-1 + n

Expressing as a summation

 Can we express this as a summation?

 Yes!

 Does this have a known formula?

 Yes!

 What does this formula multiply out to?

 (n2 + n) / 2

 or O(n2)

UMBC CMSC 341 Asymptotic Analysis 50

n

i
i

1 2

)1(

nn

Other Geometric Formulas

 O(n3)

 O(n4)

 O(cn)

UMBC CMSC 341 Asymptotic Analysis 51

, where c ≠ 1

6

)12)(1(2

1

nnn
i

n

i

4

)1(223

1

nn
i

n

i

c

c
c

nin

i

1

1)1(

0

Big O: Example 5

 Code:
sum3 = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= i; j++) {

sum3++; }

}

for (k = 0; k < n; k++) {

a[k] = k;

}

 Complexity:

 Quadratic – O(n2)

UMBC CMSC 341 Asymptotic Analysis 52

Big O: Example 6

 Code:
sum4 = 0;

for (k = 1; k <= n; k *= 2)

for (j = 1; j <= n; j++) {

sum4++;

}

 Complexity:

 O(n log n)

UMBC CMSC 341 Asymptotic Analysis 53

Big O: More Examples

 Square each element of an N x N matrix

 Printing the first and last row of an N x N

matrix

 Finding the smallest element in a sorted array

of N integers

 Printing all permutations of N distinct

elements

UMBC CMSC 341 Asymptotic Analysis 54

Big Omega (Ω) and Big Theta(Θ)

55

“Big” Notation (words)

 Big O describes an asymptotic upper bound

 The worst possible performance we can expect

 Big Ω describes an asymptotic lower bound

 The best possible performance we can expect

 Big Θ describes an asymptotically tight bound

 The best and worst running times can be

expressed with the same equation

UMBC CMSC 341 Asymptotic Analysis 56

“Big” Notation (equations)

 Big O describes an asymptotic upper bound

 f(n) is asymptotically less than or equal to g(n)

 Big Ω describes an asymptotic lower bound

 f(n) is asymptotically greater than or equal to g(n)

 Big Θ describes an asymptotically tight bound

 f(n) is asymptotically equal to g(n)

UMBC CMSC 341 Asymptotic Analysis 57

Big O and Big Omega Example

UMBC CMSC 341 Asymptotic Analysis 58

f(n)
4x2+16x+2

g(n)
x4

4*g(n)
x2

O(n4) Ω(n2)

Big Theta Example

UMBC CMSC 341 Asymptotic Analysis 59

f(n)
4x2+16x+2

10*g(n)
x2

4*g(n)
x2

O(n2) Ω(n2)

Θ(n2)

A Simple Example

 Say we write an algorithm that takes in an

array of numbers and returns the highest one

 What is the absolute fastest it can run?

 Linear time – Ω(n)

 What is the absolute slowest it can run?

 Linear time – O(n)

 Can this algorithm be tightly asymptotically bound?

 YES – so we can also say it’s Θ(n)

UMBC CMSC 341 Asymptotic Analysis 60

Proof by Induction

61

Proof by Induction

 The only way to prove that Big O will work

 As n becomes larger and larger numbers

 To prove F(n) for any positive integer n

1. Base case: prove F(1) is true

2. Hypothesis: Assume F(k) is true for any

k >= 1

3. Inductive: Prove the if F(k) is true, then

F(k+1) is true

UMBC CMSC 341 Asymptotic Analysis 62

Induction Example (Step 1)

 Show that for all n ≥ 1 :

1. Base case:

 n = 1

 (This is our n0)

UMBC CMSC 341 Asymptotic Analysis 63

6

)12)(1(2

1

nnn
i

n

i

6

)1)1(2)(11(121

1

 i

i

6

)3)(2(121

1
 i

i

6

621

1
 i

i

1
21

1
 i

i

Induction Example (Step 2)

 Show that for all n ≥ 1 :

2. Hypothesis:

 Assume that

holds for any n ≥ 1

UMBC CMSC 341 Asymptotic Analysis 64

6

)12)(1(2

1

nnn
i

n

i

6

)12)(1(2

1

nnn
i

n

i

Induction Example (Step 3)

 Show that for all n ≥ 1 :

3. Inductive:

 Prove that if F(k) is true (assumed),

the F(k+1) is also true

 We’ve already proved F(1) is true

 So proving this step will prove F(2) from F(1),

and F(3) from F(2), …, and F(k+1) from F(k)

UMBC CMSC 341 Asymptotic Analysis 65

6

)12)(1(2

1

nnn
i

n

i

Induction Example (Step 3)

UMBC CMSC 341 Asymptotic Analysis 66

6

)12)(1(2

1

nnn
i

n

i

2
2

1

21

1
)1(

kii

k

i

k

i

2
21

1
)1(

6

)12)(1(

k

kkk
i

k

i

6

))1(6)12()(1(21

1

kkkk
i

k

i

6

)672)(1(221

1

kkk
i

k

i

6

)32)(2)(1(21

1

kkk
i

k

i 6

)1)1(2)(1)1)((1(21

1

kkk
i

k

i

